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ABSTRACT 

In a nuclear medium, spin-dependent forces cause the nucleon spins to fluctuate with a 
rate l?@. We have previously shown that as a consequence the effective axial-current neutrino- 
nucleon scattering cross section is reduced. Here, we calculate this reduction explicitly in 
the perturbative limit I,, < T. By virtue of an exact sum rule of the spin-density structure 
function, we express the modified cross section in terms of the matrix element for neutrino- 
nucleon scattering in the presence of a spin-dependent nuclear potential. This representation 
allows for a direct comparison with and confirmation of Sawyer’s related perturbative result. 
In a supernova core with a typical temperature T = lOMeV, the perturbative limit is 
relevant for densities p 5 1013 g cmB3 and thus applies around the neutrino sphere. There, 
the cross-section reduction is of order a few percent and thus not large; however, a new mode 
of energy transfer between neutrinos and nucleons is enabled which may be important for 
neutrino spectra formation. We derive an analytic perturbative expression for the rate of 
energy transfer. 

e Operated by Universities Research Association Inc. under contract with the United States Department o? Energy 



1 Introduction 

Neutrino scattering rates in a medium differ from those taking place in vacuum. It is well 
known that spatial correlations between the locations or spins of the target particles can 
reduce or enhance the average effective scattering cross section. For example, the anticor- 
relations caused by the Pauli exclusion principle are straigthforward to include. Even in 
a nondegenerate medium, correlations are induced by forces between the targets such as 
the Coulomb force which thereby causes electromagnetic screening effects [l]. Similarly, 
in a nuclear medium the spin-dependent nature of the nucleon-nucleon interaction may 
cause nonnegligible “pairings” of the nucleon spins and thus a reduction of the axial-current 
neutrino-nucleon scattering rate [2]. 

We presently study a less familiar cross-section modification which is caused by temporal 
fluctuations rather than spatial correlations. The main idea is that the neutrino scattering 
process takes a certain amount of time. If the energy transfer is w, the weak probe cannot 
“resolve” those temporal changes of the target configuration which take place on a time 
scale faster than about l/w. For example, the target nucleon spin may flip “during” the 
neutrino-nucleon collision and thus “cancel itself.” In linear-response theory, this effect 

is formally described by the frequency dependence of the nucleon dynamical spin-density 
structure function, which in the relevant limit amounts to the Fourier transform of the 
autocorrelation function of a single nucleon spin. In the absence of interactions the nuclear 
spin and thus its autocorrelation function is constant. In the presence of a spin-dependent 
random force the initial spin direction is forgotten, causing the spin autocorrelation function 
to decrease to zero for large times. Loosely speaking, then, for small w (large “duration” 
of the collision) the weak probe sees a reduced average target spin and thus scatters less 
efficiently. 

A complete treatment should simultaneously include spin fluctuations and spin-spin cor- 
relations, and presumably spin waves as well. All these effects are embedded in the dynamical 
spin-density structure function, which in general has multiple isospin components. However, 
in contrast to spin-spin correlations, spin fluctuations occur even when there is only one 
nucleon-provided that its spin is jiggled around. This is a multiple-scattering effect, not a 
many-body phenomenon. In certain circumstances a pion condensate [3] or the walls in the 
nuclear bubble phase [4] may be the dominant cause for nucleon spin fluctuations so that it 
is not entirely academic to study spin fluctuations independently from spin-spin correlations. 

Collision-induced changes of particle velocities or spins cause the bremsstrahlung emission 
of photons, neutrino pairs, or axions. According to the Landau-Pomeranchuk-Migdal (LPM) 
effect [6,7] the low-energy part of the radiation spectrum is suppressed if multiple interactions 
destroy the temporal coherence of the source. The spin-fluctuation effects studied here are 
analogous, except that it is the neutrino scattering rate that is being reduced. While the 
LPM effect is usually discussed for vector-current processes and thus for velocity fluctuations, 
in the case of axial-current processes in nonrelativistic nuclear matter the spin fluctuations 
are more significant. We note that temporal fluctuations do not occur for a conserved 
quantity such as the charge of a particle. The vectorial nucleon quantity that does fluctuate 
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due to collisions is the velocity, which in the nonrelativistic limit is small. Therefore, in this 
limit multiple-scattering effects are not important for vector-current neutrino interactions [5]. 
Still, because in vacuum the nonrelativistic neutral-current neutrino-nucleon scattering cross 
section is 0 = (C$+K’~)G~E,2/4 X, any modification of the axial-current part strongly affects 
the total rate. 

The importance of multiple scattering is quantified by the spin fluctuation rate rfl which 
roughly represents the inverse of the time required for the nucleon to forget its initial spin 
orientation. This effect is important if PC is of order the typical energy of the weakly 
interacting particles which scatter off, or are emitted from, the medium [8], i.e. for I’, 2 T. 
One can easily estimate (Eq. 15 below) that in a supernova (SN) core with a temperature 
of order 10 MeV this “high-density case” obtains for p 2 1013 g cmm3. Because densities as 

large as 1015 g cms3 are encountered in a SN core, quantities like the neutrino opacity or the 
axion emissivity are impossible to calculate in a purely perturbative way which is based on 
the assumption that average scattering or emission rates are the incoherent sum of single- 

scattering events. Interaction rates calculated in the “vacuum limit” are fundamentally 
flawed for the conditions of a SN core. 

To extract meaningful estimates for weak interaction rates one must take recourse to the 
more general principles of linear-response theory. With our collaborators we have begun to 
develop this perspective in a series of papers [5, 9, 10, 111. We have argued that the neutrino 
opacities or axion emissivities can be estimated by virtue of a phenomenological ansatz 
for the spin-density structure function which incorporates certain limiting cases, notably 
the low-density one, and which satisfies certain general principles, in particular a sum rule 
which can be derived independently of perturbation theory. Specifically, we estimated the 
spin-density structure function for large energy transfers w using a quasi-bremsstrahlung 
amplitude (Fig. 1). For small w, the corresponding neutrino scattering rate diverges as l/w2 
due to the intermediate nucleon going on-shell. Because the true differential scattering cross 
section must be finite for all w, and motivated by considerations of multiple scattering, we 
advocated replacing l/w2 by a Lorentzian 1/(w2 + lY2/4) where I’ is of order rO, but is 
adjusted so that the structure function obeys the sum rule. 

Meanwhile, Sawyer [12] has published an explicit treatment of the cross-section reduction 
based on more traditional perturbative techniques. In addition to the quasi-bremsstrahlung 
graphs of Fig. 1 he includes wave-function and vertex renormalizations to elastic scattering. 
The leading correction in the nucleon scattering potential, V, is the interference between 
zeroth and second order amplitudes, an example of which is shown in Fig. 2. These terms 
diverge, behaving as S(w) in the absence of nuclear recoil. However, Sawyer points out, the 
sum of all order 1 V 1 2 contributions yields a total UN cross section which is finite, but reduced 
from the vacuum value. 

Motivated by Sawyer’s work, we show how the divergence of the quasi-bremsstrahlung 
process represented by Fig. 1 can be rigorously controlled by virtue of our exact sum rule of 
the spin-density structure function without assuming any specific modification of its form, 
Lorentzian or otherwise, and without calculating the renormalization terms explicitly. How- 
ever, even though our Lorentzian ausatz is not needed to obtain the perturbative cross-section 
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reduction effect, it nevertheless yields the correct limiting value because this ansatz incorpo- 
rates the sum rule explicitly. Put differently, we may implement the sum rule by an explicit 
ansatz for the low-w behavior of the spin-density structure function, or we may use the sum 
rule in an abstract sense. Either way, in the perturbative limit the final result agrees with the 
one found by Sawyer [12] even though the path of derivation is entirely different. Our novel 
technique has the added benefit that after the nature of the perturbative region has been 
understood, the nonperturbative regime may still be studied using our proposed Lorentzian 
modification or some other related ansatz. - 

In Sect. 2 we use the structure-function formalism to derive the perturbative limit of the 
average axial-current neutrino-nucleon scattering cross section. In Sect. 3 we consider nucle- 
ons interacting with an external classical potential. In this generic example the relationship 
between the perturbative bremsstrahlung matrix element (Fig. 1) and the cross-section re- 
duction becomes particularly transparent and allows for a direct comparison with Sawyer’s 

[12] result. 
In a dilute medium where the perturbative approximation is justified, the most impor- 

tant practical consequence of nucleon spin fluctuations may not be the mild cross-section 
reduction, but a new mode of energy transfer between neutrinos and the nuclear medium[lO]. 
This energy exchange is enabled by the nontrivial frequency dependence of the spin-density 
structure function and thus is specific to spin fluctuations; spin-spin correlations do not 
contribute. Indeed it is plainly visible from the bremsstrahlung nature of the underlying 
matrix element (Fig. 1) that neutrinos can transfer energy to nucleons above and beyond 
the standard nucleon recoil effect. 

Complementing the numerical expression of Ref. [lo] we derive in Sect. 4 an analytic 
expression for the average energy transfer per collision. This perturbative result is relevant 
for conditions around the neutrino sphere in a SN and thus for the formation of neutrino 
spectra. Sect. 5 is given over to discussion and a summary. 

2 Average Neutrino Scattering Rate 

2.1 Low-Density Limit 

The impact of nucleon spin fluctuations on neutrino scattering rates is most easily understood 
in the long-wavelength limit (see Ref. [5] f or a discussion) which has been employed in 
virtually all previous papers dealing with neutrino opacities, or neutrino pair and axion 
emissivities, in SN cores or old neutron stars. In this limit, the momentum transfer between 
neutrinos and nucleons is neglected. The axial-current scattering cross section may then be 
written as 

_ 3C;G; &; S(Q - ~2) daA 
dE2 4~ 27r ’ (1) 

where ei and ~2 are the initial- and final-state neutrino energies, GF is the Fermi constant, 
and the neutral-current axial weak coupling constant in a dilute medium is CA M +1.37 and 
-1.15 for protons and neutrons, respectively [5]. 
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For simplicity we focus on an isotropic, nonrelativistic, nondegenerate medium of baryon 
density ?Zg, temperature T, and a single species of nucleons. In this case the function S(w) 
is the dynamical spin-density structure function in the k + 0 limit [5, 131 

SW = $1: dt eyu(t) * u(O)), - 
B 

(2) 

where (u(t) - u(0)) - is the autocorrelation function for the nucleon spin operator u(t) = 
jd3x b(z) at time t. Here a(z) s $$J~(z)~$J(z), G(z) is the nucleon field (a Pauli two- 
spinor) and 7 is a vector of Pauli matrices. The expectation value (. . .) is taken over a 
thermal ensemble so that detailed balance S(w) = S(-w) ew/* is satisfied. We note that our 
definition of energy transfer is positive for energy given to the medium. 

In order to derive an average scattering cross section we consider nondegenerate thermal 
neutrinos which we take to follow a Maxwell-Boltzmann distribution; the difference to a 
Fermi-Dirac distribution is inessential for the present discussion. Therefore, we consider the 
quantity 

3CiG$ J d3kl esC1’* Jo” ~5~2 E: S(cl - Ed) 
bA) = 4R 2n J d3kl e-c1fT ’ (3) 

With the dimensionless energy transfer z E (~1 - EZ)/T and after one explicit integration 
one finds [5] 

(UA) = OT 
J 

ooo $3(x) (2 + 2 + ix’) es=. (4) 

Here, 0~ G 9 C~G$T2 while s(x) E T S(xT) is th e d imensionless structure function. In 
vacuum the nucleon spins do not evolve, yielding a constant autocorrelation function and 
thus s(x) = 27rr6(5). Then (CA) = UT where Jo” dx 6(x) = f has been used. 

For reasons that will soon become apparent, we concentrate not on a direct calculation of 
the average cross-section at finite density (a,~), but rather on its deviation from the vacuum 
cross Section h(oA) E (us) - UT or 

=dx - ‘h) _ -1+ 
a* J o gS(X)(2+X+~x2)e-Z. 

The crucial step is to express the r.h.s. as a common integral over s(x). To this end we 
use the normalization J?z s(x) dx/2r = 1 which obtains if the spins of different nucleons 
evolve independently; otherwise an additional correlation term would appear on the r.h.s. 
[5, 10, 111, a possibility to be addressed in Sect. 2.2 below. By virtue of detailed balance 
this sum rule is 

J 
Om g S(x) (1 + e+) = 1. 

Replacing - 1 in Eq. (5) by the negative of Eq. (6) yields 

6h) -=- 
UT J om g %x) G(x), (7) 
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where G(x) G -[(2 + x + f x2) em2 - (1 + e-l)] or 

G(x) = 1 - (1 + x + i x2) e-=. (8) 

This function is shown in Fig. 3. It expands as G(x) = f x2 + 0(x3) for small x, approaches 

1 for large x, and is always positive. Because S(x) is also a positive function, we find that 
the average cross section in the medium is indeed always suppressed by spin fluctuations. 

Thus far S(w) has been the nonperturbative but unknown structure function. However, 
what can be calculated in the framework of perturbation theory is an expression Z&.,.&w) 
based on the “bremsstrahlung” or “medium excitation” amplitude Fig. 1. In our previous 
works [5, 81, we showed that Sr,Rnu(w) diverges for small w as wm2, a behavior which is 
generic for all bremsstrahlung processes-for the electromagnetic case see Jackson [14]. We 
mav then write 

. 

I 

S&-(W) = $ s(w/T) x 
1 

fY’* ;; ; ; 0”; 
1 

where s(x) is a nonsingular even function with s(0) = 1. The quantity Ib, defined as the 
coefficient of the ws2 singularity of S br-(w), is physically interpreted as the spin-fluctuation 

rate.’ 
It should now be clear why we have calculated the deviation 6(6A) rather than (0~) 

itself-the x2 behavior of G(x) compensates for the singularity in Sb-. We are therefore 
free to substitute &r-(W) for S( w an ) d are assured of a finite answer for &(a~). Further, if 

we accept that in a dilute medium the 
then 

6(aA) _ 

UT 

is the desired perturbative result. 

true S(w) is well-represented by SbXms(W) for w >> I?,, 

J 

00 dx - - o g sb=dx) Gcx) (10) 

With our representation Eq. (9) the cross-section reduction is to lowest order in yC G 

L/T 
&@A) 3b O” z-e 

J 2n 0 
dx G(x) 

UT 
22 44 (11) 

Taking for simplicity the classical limit s(x) = 1 we find 

b(uA) 5 -/c~ = --_ 
UT 6 2~’ (12) 

‘One may consider the limit of a classical spin vector s(t) being kicked by a random force at a rate 
r C0ll. If the spin changes abruptly by a random amount As in a given collision (which is thus assumed 
to be “hard”) and if subsequent spin orientations are uncorrelated one finds S&-(W) = 10/(w2 + I’z/4) 
with r. = r C0ll ((As)~)/(s~) [7, 151. This justifies identifying IQ with an average spin rate of change or a 
spin-fluctuation rate. In the classical limit of hard collisions one has s(z) = 1, while for general interaction 
potentials s(z) is more complicated. Quantum corrections introduce the detailed-balance factor, and cause 
s(z) to be a decreasing function for large t, as discussed for the case of electromagnetic bremsstrahlung by 
Jackson [14]. The same conclusion is inferred from the f-sum rule for S(w) [ll]. 



Once more, these results put in evidence that 70 is the expansion parameter which defines 
the perturbative regime. 

We may estimate the error due to using S&-(z) in Eq. (10) instead of the full S(x) in 
Eq. (7). If the true S(x) is given by Sr, rems(x) to lowest order in 7c so that S(x) - .$,=-(x) = 

O(7:) for x->> 7a, then Jom[S(x) - &-,-(x)] G(x) dx/2n = O($). - 
This implies that the lowest-order cross-section reduction effect represented by Eq. (11) 

will be found by any assumed functional form S~PProX(w) for the true S(w) if SaPProX(w) 

agrees with Sbre-(w) to o(7:) for w >> IO. Any such function which is normalized can be 
inserted into Eq. (4) and will then yield Eq. (11) up to an error of O(72). Further, any such 
function, even if it is not normalized, will yield this result when inserted into Eq. (7) where 
the normalization condition has been reshuffled into the function G(x). To lowest order in 
ye, the cross-section reduction effect is independent of the detailed structure of the true S(w) 

in the neighborhood of w = 0. 

2.2 Spin-Spin Correlations 

A crucial step in the above analysis was use of the sum rule in Eq. (6), appropriate for 
a medium of uncorrelated nucleons. However, in a real nuclear medium the nucleon spin 
fluctuations are typically caused by a spin-dependent interaction among nucleons. Inevitably, 
this will cause correlations between different spins so that the r.h.s. of the sum rule Eq. (6) is 
1 +C(y,) where in a dilute medium IC(7,)I < 1. It follows that G(x) receives an additional 
contribution -C(7,)(l +-es=) and-b(UA)/UT one of order C(7,). Here ~(UA)/UT is to be 
calculated with the full S(x) not S&&z). If C(7,) is of order 7,“, then the correction to 
the cross-section shift from considering spin-correlations is also of order 7,“. 

We may next use the above estimate of the error incurred by using &,-(2) rather than 
t_he true g(x). Then, if C(7,) oc 7,“, with n > 1 the cross-section deviation calculated from 
Sbrems(x) in Eq. (10) * t 1 IS o owest order independent of spatial spin-spin correlations. 

For example, if the nucleon-nucleon interaction potential is written as in Ref. [ll], and 
if the correlation length scales as 3b, then we expect C(3b) to be of order 72, in which case 
the low-density limit of the cross-section change is well described by Eq. (10). 

2.3 Comparison with the High-Density Behavior 

We next compare the low-density limit thus derived with our more general previous expres- 
sion. In a dense medium (^/a 2 1) the detailed structure of S(w) for low energy transfers 
matters. In the past we have advocated a Lorentzian form 

S app*ox(w) = w2 ;r2,4 s(Q) x { rY'* ;: ; 2 ;? 
, 

(13) 

where for a given rQ one chooses r such that SaPProX(w) is normalized. This ansatz is 
motivated by a heuristic argument [8] and by the classical limit which obtains for w < T 

[7, 151. Equation (13) naturally approaches the appropriate limit for low densities. 
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In Fig. 4 we show (UA)/UT for s(x) = 1 as a function of 70. The dotted line marks the 
“naive” constant cross section which obtains when spin fluctuations are ignored entirely. The 
dashed line represents the perturbative result according to Eq. (12); for ^/o 2 7.5 it yields 
complete nonsense (a negative scattering cross section). The solid line marked “Lorentzian” 
was obtained with the above ansatz for S,,r,,X(w). The dashed line isits tangent at the point 

7u = 0 so that indeed the Lorentzian ansatz yields the same perturbative limit as the direct 
calculation in Sect. 2.1 where the sum rule was implemented in an abstract sense rather than 
by a specific ansatz for the low-w behavior of S(w). The Lorentzian ansatz yields a plausible 
intermediate result between the naive and lowest-order perturbative results. 

The overall shape of the Lorentzian line in Fig. 4 is determined by the bremsstrahlung 

wings of Sapprox( w to e ) g th er with the sum rule. In order to test how sensitive it is to the 
assumed low-w shape we have considered a second ansatz of the form 

S approx(w) = r. x 

I 

21: E: ~s<wws won 

0 - 
(14) 

Of course, for w < 0 we have the detailed-balance factor e”‘* as in Eq. (13), and in general 
there is a function s(w/T) which we take to be equal to 1 for the purpose of illustration, For 
a given choice of F, the frequency wo is determined such that S~pprOX(w) fulfills the sum rule. 
The cross-section reduction derived from this “top-hat” ansatz is shown in Fig. 4. It has a 
common tangent at 70 = 0 with the dashed line and the Lorentzian curve, again confirming 
that in the perturbative limit the detailed low-w shape of S(w) does not matter. For large 7U 
the deviation from the Lorentzian curve is relatively small. Therefore, it appears that even in 
the nonperturbative regime the cross-section reduction is dominated by the bremsstrahlung 
calculation in conjunction with the sum-rule, and not by fine points of the low-w shape 

of S(w). 
In this discussion we have used the classical bremsstrahlung limit of hard collisions where 

s(x) = 1. Quantum corrections alone require that s(x) is a decreasing function of x for 
large x, and the same conclusion is reached on the basis of Sigl’s f-sum rule [ll]. Further, 
the detailed large-x behavior depends on the short-distance behavior of the assumed NN 
interaction potential. It is evident from Eq. (11) that the detailed functional form of s(x) 
will determine the slope of the curves in Fig. 4 at 7. = 0. However, any change in slope is 
independent of the manner by which s(x) h as b een adjusted to satisfy the sum rule. Thus, 
the three curves remain tangent to each other, although their slope will in general be different 
from the value -g& determined for s(x) = 1. 

To express the spin-fluctuation rate in terms of the physical density and temperature 
we need to assume a specific model for the cause of the spin fluctuations. Taking nucleon- 
nucleon interactions modelled by a one-pion exchange (OPE) potential as in our previous 
papers one finds for a single species of nucleons 

112 
r ,&E = 4J;;a;nBT 

rnz2 
= 8.6 MeV p13 Tti2, 

where CY, G ( f2mN/m,)2/4?r M 15 with f M 1.0 is the pion fine structure constant, p13 E 
p/1013 g cmm3, T,o G T/10 MeV, and m N = 940 MeV is the nucleon mass. The pion mass 
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has been neglected. Taking T M 10 MeV as a typical value for SN conditions, one concludes 
that the dividing line between high and low density is roughly given by 1013 g cmm3 or 3% 
nuclear density. 

We stress that Fo,oPE is in itself a perturbative result and thus will be a reasonable 
representation of the true F, only if Fo,op~ /T 5 1. Therefore, in the high-density regime 
Eq. (15) cannot be used to translate an assumed spin-fluctuation rate into a corresponding 
physical density. We have previously argued that the true ?b in a nuclear medium never 
exceeds a few [lo, 111. 

3 Matrix-Element Representation 

3.1 Perturbative Cross-Section Reduction 

The perturbative structure function s&.&W) is calculated from the quasi-bremsstrahlung 
process shown in Fig. 1 so that one may represent the cross-section reduction b(aA) directly 
in terms of its matrix element M. The translation is most easily achieved by considering the 
differential scattering cross section. Denoting the four-momentum of the in- and outgoing 
nucleon with (El, pr ) and (Es, pz), respectively, we find 

d&i 
J 

dQz @PI flps @k -= 
d&z 

J.ke; 
nB o”(2x)“(2*)3(2n)3f1 

X c (l"12) 2~12~22E~2E~ 
(2'd363(~~ + k - p2)274E1 + ~1 - E2 - e2). (16) 

spins 

Here, n, is the number density of classical scattering centers, fi is the occupation number 
of the initial-state nucleon, k is the momentum absorbed by the external potential, Pauli 
blocking factors are ignored for all particles because of the assumed nondegeneracy, and the 
neutrinos have been ignored in the momentum 5 function because of the long-wavelength 
approximation. The expectation value (IM 1’) is understood to include the averaging of 
classical ensemble variables on which the external potential might depend. The perturbative 
structure function sb-( w 1s o ) ’ bt ained by comparing Eq. (16) with Eq. (1). 

In order to derive the matrix element we use the axial part of the weak interaction 
Hamiltonian and an external classical potential for the nucleon spins. The most general 
form for the potential in Fourier space is [16] 

V(k,u,s) =Uo(k)+Us(k)u~s+u~(k)(3u&4-u~~), (17) 

where k = lkl, & = k/k, s is a classical spin vector of length 1 associated with the external 
potential, and u is the nucleon spin operator. Here, U,-, is a spin-independent potential while 
Us and UT represent a spin-dependent scalar and tensor force, respectively. After some 
algebra one finds 
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c WI*) 
Spins 

2E12er2&2& = 
s[lU~(k)l~(l - $a) - 2Re[uT(k)u,‘(k)] (CICZ - $22) 

+ IUT(k)1*(2 - c1c2 - $lZ)], - 

where c; (; = 1 or 2) is the cosine of the angle between the direction of neutrino i relative 
to k, while cl2 refers to the angle between the two neutrinos. We have averaged over the 
external spin directions s with an assumed isotropic distribution. 

The interaction Us(k) d oes not contribute because it leaves the nucleon spins unchanged. 
This leaves us with the scalar and tensor force Us(k) and UT(~), respectively. If the classical 
scatterers are substituted by the nucleons themselves only the tensor term survives because 
the scalar term conserves the total spin of two colliding nucleons and thus does not cause 

spin fluctuations [ 111. 
Expression ( 18) reveals explicitly the wB2 divergence of Eq. (16) which thus cannot be 

integrated to yield a total cross section. However, following the steps of Sect. 2.1 we can 
derive a convergent expression for the medium-induced change of 01 which denotes the total 
axial-current scattering cross section for a fixed initial-state energy ~1. In the structure- 
function language it is the de2 integral of Eq. (1) or equivalently 

3C2G2 
Ul = A F 

47r J 
_‘_, g S(w) (&I - w)* @(El - a>. (19) 

In vacuum 01,~~ = (3CiG$/47r) E; so that the medium-induced change 60~ G OiFme,.j - Ul,VaC 

= du -, \ CE, - wj2 WEI - WI ,~ ~. 
iS 

601 

J 

+( 
-c-1+ -,Gs(w)‘- ’ ‘- ‘. 
Ql ,Yac e: 

(20) 

Then we may proceed as before and replace -1 by an integral over the structure function 
by virtue of its normalization so that* 

6fll -= 
fll ,“ac J +y g SW 

(&I - wy @(El - w) 

E: 

-1. 
I 

(21) 

As before, the integrand varies effectively as S(w)w* f or small w because the term linear in w 
switches sign at the origin. Therefore, to lowest order we may substitute S(w) 3 Sbrems(w), 
provided we interpret the remaining integral by its principal part. 

&&w) is obtained by comparing Eq. (1) with Eq. (16) and using Eq. (18). After 
performing the &J, dp,, and dR2 integrations we arrive at 

SC1 2 nc @PI @k 
-=-- (2n)3(2?r)3fl 

luS(k)t2 + 21uT(Ic)1* 

qvac 3 nB J W* 

(cl - w)2 @(El - w> _ 1 

E:: 1 , c22j 

where the energy transfer is-w = -(2pl - k + k2)/zmN. 

21n this form one can easily see that for small ~1 the cross section actually increases. For example, z1 = 0 
leads to a vanishing vacuum cross section while in the medium it is (3CiGg/47r) Jf, dw w2 S(W)/~A or by 

detailed balance (3CiGc/47r) &O” CL w2 S(w) e-“lT/2a. 

9 



3.2 Comparison with Sawyer’s Result 

As mentioned in the introduction, Sawyer [12] h as d iscussed a cross-section reduction due 
to the interaction of the target nucleons with bystander particles. He does not provide an 
immediate physical interpretation of his calculation, but we believe-that in essence he has 
studied the same effect that is the topic of our paper, namely the scattering version of the 
Landau-Pomeranchuk-Migdal effect. However, his formal approach is quite different from 
ours. 

The optical theorem implies that calculating the total neutrino scattering cross section 
amounts to a calculation of the imaginary part of the neutrino forward-scattering amplitude 
fe on nucleons. Sawyer uses analyticity constraints[l?] f or o o recognize that the total cross f t 
section should be finite order by order in a perturbative expansion in powers of the nucleon 
interaction potential. Further, he observes that this result holds even though individual 
contributions to f. have infrared singularities from on-shell intermediate states. One type of 
V* contribution to f. comes from interference between the zeroth and second order scattering 
amplitudes. Fig. 2 shows such a contribution which may be interpreted as a wave-function 
renormalization of the incoming nucleon. Similar terms would renormalize the outgoing 
nucleon wave function, or provide a vertex correction. The other type of V* contribution to 
Im(fc) is given by a phase-space integral over the square of the amplitudes shown in Fig. 1. 
These terms correspond to the quasi-bremsstrahlung inelastic scattering process, and also 
diverge as discussed above. Sawyer’s main point is that the divergences in these two types 
of terms must sum to a finite result. 

Sawyer [l2] has worked out several examples which illustrate this approach. Specifically, 
the cross-section reduction represented by his Eq. (10) is very similar to our Eq. (22). How- 
ever, our Eq. (22) h as not yet been averaged over initial state neutrino energies, Sawyer 
has used bystander nucleons to provide the potential so that his expression for the energy 
transfer takes account of the bystander recoil, and he has studied vn + pe- scattering rather 
than vN + Nu so that the proton-neutron mass difference appears. Further, he has used a 
scalar potential which is explicitly isospin dependent so that the role of our spin fluctuations 
is played by isospin fluctuations in his case. 

The main point of agreement is the structure of the term in square brackets in Eq. (22). 
Both Sawyer’s Eq. (10) and our Eq. (22) diverge if one considers the first term in square 
brackets independently from the -1. In our derivation, the -1 effectively represents the 
sum rule of the nonperturbative S(w) for which we have substituted Sbnms(w) after the two 
terms have been combined. In Sawyer’s approach, the -1 corresponds to the wave-function 
renormalization of the elastic scattering rate. Our interpretation of the agreement between 
these results is as follows. 

In effect, Sawyer has calculated the perturbative approximation S(2)(w) to second or- 
der in V. Recall that the zeroth-order approximation is S(“)(w) = 2x6(w) because Sawyer 
also uses the long-wavelength limit where nucleon recoil effects are ignored. In this limit: 
any nonvanishing power of St’) ( w a w # 0 must arise from the quasi-bremsstrahlung ) t 

amplitudes of Fig. 1 so that inevitably S(‘)(w) = S brems(w) for w # 0. Sawyer’s renormal- 
ization terms modify only the elastic channel w = 0 so that his complete result amounts to 
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S(*)(w) = Sbrems(w) - AS( ) w w h ere A is an infinite integral expression. Of course, S(‘)(w) is 
highly singular and thus unphysical at w = 0 in the sense that in the neighborhood of w = 0 
it does not provide a representation of the differential scattering cross section Eq. (1). HOW- 

ever, St2)(w) is legitimate as an integral kernel to calculate the total cross section Eq. (4). 
The agreement between Sawyer’s and our results shows that the second-order perturbative 
calculation yields an expression for A such that Sc2)(w) fulfills our sum rule. 

In essence, then, Sawyer’s calculation amounts to showing explicitly that the renormal- 
ization terms not only cancel the low-w divergence of Sbre- (w), but indeed cancel it in such a 
way that St2)(w) fulfills th e sum rule. The renormalization terms are an explicit second-order 
manifestation of the information embodied in our sum rule. In our derivation, we have shown 
the sum rule to be a general nonperturbative property of S(w). Therefore, once we have 
calculated Sb-(w) we can handle its low-w divergence either by an abstract application of 
the sum rule, or by an explicit ansatz for the physical behavior of the true S(w) near w = 0. 
Either way we do not need to calculate the renormalziation terms explicitly. 

Although Sawyer’s and our approaches are equivalent in the low-density limit, they are 
not equivalent when one considers the high-density case. There, a perturbative expansion 
makes no sense as higher-order terms exceed the lower-order ones. However, by making use 
of the sum rule, and exploiting the physical insight that S(w) should have a width of order 
I, [ll] and possess a hard bremsstrahlung tail for w >> IC, we have the basis for a reasonable 

model of the high-density regime. 
To summarize, our derivation is based on representing interaction rates by virtue of 

current correlators which allow for a direct transition to the classical limit. Therefore, our 
approach allows for an intuitive interpretation of the cross-section reduction as a temporal 
spin-averaging effect. Moreover, because we know on general grounds that the sum rule 
Eq. (6) must be fulfilled, we do not need to worry about a calculation of the various infinite 
second-order corrections to the elastic scattering rate. In our derivation, the only required 
Feynman-graph evaluation is that of the “medium excitation term” of Fig. 1. Finally, our 
derivation allows for a clear and physical identification of the dimensionless parameter ^~‘a 
which defines the perturbative expansion. Sawyer’s technique, on the other hand, represents 
a more familiar methodology if one approaches the problem as a perturbative expansion in 
powers of V. 

4 Energy Transfer 

As stressed in Ref. [lo], the most important effect of nucleon spin fluctuations may be that 
they allow for a new mode of energy transfer by the quasi-bremsstrahlung process shown in 
Fig. 1. The relevant figure of merit is the average energy transfer per collision (A&)b,, or 

Jo” kqe 2 -cl/T, 
JoW d4(C2 - El)S(El - t2) 

Joe” dcl$e-EIIT~ Jo” &&S(&i - &2) ’ (23) 

Here, T, is the temperature of the neutrinos which are assumed to follow a Maxwell- 
Boltzmann distribution while the nucleons are characterized by T. In Ref. [lo] this expression 
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was evaluated numerically on the basis of the Lorentzian ansatz for the structure function. 
However, in the dilute-medium limit one can also derive an explicit expression. We first 

note that in the numerator and denominator one can each perform one integration explicitly 
so that 

(@mns = Jr dx 3(x) x Ffl( 5) ( em2 - e+“) - 

T Jr dx s(x) Fp(x) (e+ + e-0”) 
(24 

with &(x) G 1 + f@x + $/3*x2 and /3 G T/T,. 

In the dilute-medium limit we may use to lowest order S(x) + S:brrms(z) in the numerator, 
while in the denominator S(x) + 27r 6(x) because the medium-induced change of the cross 

section is itself of order yU. With the representation Eq. (9) we find 

(A+mans = ro 
J 

00 dx Wx) -s(x) 7 (e+ - espz). 
0 2n (25) 

For the classical limit of hard collisions where s(x) = 1 this is 

(~+mns = ro 
-7+6/?+p2 + 12lnP 

24a (26) 

This is to be compared with the average energy transfer by nucleon recoils, (AC),,, = 
30 (/3 - 1) P-2 T2/mN [18]. Th ere ore, f the ratio between the two is 

(Ae>b== = I’,m~p2-7+6P+P2+121nD 

(A+ecoil T2 720x (p - 1) 

= v - 1) + 
144x (27) 

Therefore, the importance of the “inelastic” mode of energy transfer exceeds that of recoils 
if yC > 36~ T/mN. 

We note that the quasi-bremsstrahlung process of Fig. 1 has a standard counterpart where 
neutrino pairs are absorbed or emitted. We define a rate of energy transfer in this channel, 
normalized to the average neutrino scattering rate in analogy to the above discussion. By 
virtue of Ref. [5] the result can be expressed like Eq. (25) with Fp(x) = p5x5/1440. The 
efficiency of energy transfer relative to recoil effects is 

WPti = ramlv p2 (P’ + NP + 1) 

(A+ecoi~ T2 3600~ . (28) 
Therefore, the quasi-bremsstrahlung process of Fig. 1 is approximately a factor of 25 more 
important than pair processes. 
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5 Discussion and Summary 

To summarize, we have studied the neutrino-nucleon scattering cross section taking into 
account nucleon spin fluctuations. The effect of random spin fluctuations is to reduce the 
cross section in a manner similar to the LPM reduction of photon bremsstrahlung by multiple- 
scattering effects. We have derived perturbative results in terms of a lowest-order spin- 
density structure function, and also in terms of the squared matrix element of neutrino- 
nucleon scattering in the presence of bystander nucleons or more general external spin- 
dependent potentials. In this form, our result agrees with Sawyer’s [12] related finding. The 
low-density limit is unique unless there are unexpectedly strong spin-spin correlations. 

. 

While we have focussed on neutral-current processes, similar conclusions would obtain 
for charged-current collisions as stressed in Refs. [9, 121. 

The explicit low-density results are theoretically interesting, but their practical signifi- 
cance is limited. It is obvious from Fig. 4 that a plausible extrapolation into the high-density 
regime vastly differs from the perturbative result for y,, = I?,/? 2 1 which implies that the 
perturbative result cannot be trusted for densities greater than a few percent nuclear. While 
Fo,oPE overestimates the true Fb at nuclear density, in a SN core one has values for the 
true yg of order a few, perhaps as large as 10 [lo, 111. Th ere ore, f the neutrino opacities 
in the inner SN core cannot be treated by perturbation theory alone. Near the neutrino 
sphere, corresponding to 7Q = O(l), a perturbative treatment is roughly justified, but the 
cross-section reduction is small (a few percent) and thus not overly significant. 

Near the neutrino sphere, the most important practical consequence of nucleon spin 
fluctuations is likely to be the inelastic or quasi-bremsstrahlung mode of energy transfer. 
With Eq. (27) and taking T = 5 MeV as a typical neutrino-sphere temperature it is found 
to compete with standard recoils for 7g 2 0.5. As this value is representative for conditions 
around the neutrino sphere, we confirm that the inelastic mode of energy transfer is about 
as efficient as recoils and thus may be important for the formation of neutrino spectra [lo]. 
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Figure 1: Neutrino-nucleon scattering in the presence of an external spin-dependent potential 
for the nucleons. The potential can arise from bystander nucleons, a pion condensate, the 
walls in the nuclear bubble phase, or some abstract external force. 

Figure 2: One diagram representing the interference between zeroth and second order scat- 
tering amplitudes that leads to a wave-function renormalization of the incident nucleon for 
v N scattering. 
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Figure 3: Function G(s) as defined in Eq. (8). 
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Figure 4: Average axial-current neutrino-nucleon scattering cross section as a function of the 
spin-fluctuation rate in the classical limit where S(Z) = 1. The dotted line refers to a naive 
calculation where nucleon spin fluctuations are ignored entirely. The dashed line refers to 
the low-density perturbative expansion which agrees with Sawyer’s [12] related result if one 
expresses the spin-fluctuation rate FQ in terms of the assumed nucleon interaction potential 
(Sect. 3.1). The solid line marked “Lorentzian” arises from the ansatz Eq. (13) while the one 
marked “Top-Hat” arises from Eq. (14). The second horizontal axis expresses 7C in terms 
of the physical density p for 2’ = 30MeV, using the OPE interaction potential according 
to Eq. (15). The correspondence between y,, and p is meaningful only in the perturbative 
regime where +yO < a few. 
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